SCHEME & SYLLABUS M.Tech (Electrical Engineering) Full-time Choice Based Credit System

UIET Sant Baba Bhag Singh University 2019

Index

S.No	Subject Code	Subject	Semester	Page No
	-	Scheme	1-4(ALL)	1-9
1.	EE501	Power System Analysis	1	9
2.	EE503	Power System Dynamics-I	1	12
3.	EE505	Power System Steady State Analysis Laboratory	1	13
4.	EE507	Power System Dynamics Laboratory	1	14
5.	EE509	Advanced Power Electronic Circuits	1	15
6.	EE511	Digital Control	1	16
7.	EE513	Renewable Energy System	1	17
8.	EE515	Engineering Optimization	1	18
9.	EE517	PWM Converter and Applications	1	19
10.	EE519	Electric Power Distribution System	1	20
11.	EE521	SCADA System & its Applications	1	21
12.	EE523	Optimal & Adaptive Control	1	22
13.	MAT524	Research Methodology and IPR	1	23
14.	EE502	Power System Dynamics-II	2	24
15.	EE504	Digital Protection of Power System	2	25
16.	EE506	Power System Protection Laboratory	2	26
17.				
18.	EE510	Advance Control System	2	27
19.	EE512	Advanced Digital Signal Processing	2	28
20.	EE514	Dynamics of Electrical Machines	2	29
21.	EE516	Smart Grids	2	30
22.	EE518	Distributed Generation	2	31
23.	EE520	Robust Control	2	32
24.	EE522	Artificial Intelligence Techniques	2	33
25.	EE524	Industrial Load Modeling & Control	2	34
26.	EE526	Power Electronics Applications to Power Systems	2	35
27.	EE528	Smart Grids Laboratory	2	36
28.	EE530	Artificial Intelligence Laboratory	2	37
29.	EE601	FACTS and Custom Power Devices	3	38

_				
30.	EE603	Modeling and Control of Distributed Parameter	3	39
		System		
31.	EE605	Dynamics of Linear Systems	3	40
32.	EE607	Energy Conversion Processes	3	41
33.	EE609	Dissertation-I	3	42

Course Scheme M. Tech (Electrical Engineering)

Full-time

Course Code and Definition						
Course Code	Definition					
PC	Program Core					
PE	Program Elective					
OE	Open Elective					
Audit	Audit Courses					

SEMESTER I

Scheme for M. Tech. 1st Year

I. Theory Subjects

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PC	EE501	Power System Analysis	3:0:0	3:0:0	3	3
2	PC	EE503	Power System Dynamics-I	3:0:0	3:0:0	3	3
3	PE		Professional Elective-I	3:0:0	3:0:0	3	3
4	PE		Professional Elective-II	3:0:0	3:0:0	3	3
5		MAT524	Research Methodology and IPR	2:0:0	2:0:0	2	2
6	Audit**			2:0:0	0:0:0	2	NC

II. Practical Subjects

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PC lab	EE505	Power System Steady State Analysis Lab	0:0:4	0:0:2	4	2
2	PE lab	EE507	Power System Dynamics lab	0:0:4	0:0:2	4	2

III. Professional Elective-I

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PE	EE509	Advanced Power Electronics Circuits	3:0:0	3:0:0	3	3
2	PE	EE511	Digital Control	3:0:0	3:0:0	3	3
3	PE	EE513	Renewable Energy Systems	3:0:0	3:0:0	3	3
4	PE	EE515	Engineering Optimization	3:0:0	3:0:0	3	3

IV. Professional Elective-II

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PE	EE517	PWM Converter and Applications	3:0:0	3:0:0	3	3
2	PE	EE519	Electric Power Distribution System	3:0:0	3:0:0	3	3
3	PE	EE521	SCADA System & its Applications	3:0:0	3:0:0	3	3
4	PE	EE523	Optimal & Adaptive Control	3:0:0	3:0:0	3	3

SEMESTER II

Scheme for M. Tech. 2nd Semester

I. Theory Subjects

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PC	EE502	Power System Dynamics-II	3:0:0	3:0:0	3	3
2	PC	EE504	Digital Protection of Power System	3:0:0	3:0:0	3	3
3	PE		Professional Elective-III	3:0:0	3:0:0	3	3
4	PE	1	Professional Elective-IV	3:0:0	3:0:0	3	3
5	Audit**	19		2:0:0	0:0:0	2	NC

II. Practical Subjects

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PC lab	EE506	Power System Protection Laboratory	0:0:4	0:0:2	4	2
2	PE lab		Professional Elective –I Laboratory	0:0:4	0:0:2	4	2
3		EE508	Mini Project with Seminar	0:0:4	0:0:2	4	2
III	. Professio	onal Elective-I	1 20202	29	7/101	3	

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PE	EE510	Advance Control System	3:0:0	3:0:0	3	3
2	PE	EE512	Advanced Digital Signal Processing	3:0:0	3:0:0	3	3
3	PE	EE514	Dynamics of Electrical Machines	3:0:0	3:0:0	3	3
4	PE	EE516	Smart Grids	3:0:0	3:0:0	3	3

IV. Professional Elective-IV

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PE	EE518	Distributed Generation	3:0:0	3:0:0	3	3
2	PE	EE520	Robust Control	3:0:0	3:0:0	3	3
3	PE	EE522	AI Techniques	3:0:0	3:0:0	3	3
4	PE	EE524	Industrial Load Modeling	3:0:0	3:0:0	3	3
			& Control				

V. P	V. Professional Elective –I Laboratory										
S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours				
1	PE	EE526	Power Electronics								
			Applications to Power	0:0:4	0:0:2	4	2				
			Systems								
2	PE	EE528	Smart Grids Laboratory	0:0:4	0:0:2	4	2				
3	PE	EE530	Artificial Intelligence	0:0:4	0:0:2	4	2				
			Laboratory	0.0:4	0.0:2	4	2				

*Students may go for MOOC Courses during semester break.

SEMESTER III

Scheme for M. Tech. 3rd Semester

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PE		Professional Elective-V	3:0:0	3:0:0	3	3
2	OE	Open Elective	I	The second			
		CE611	Introduction to Rural Technology and Community Development	4:0:0	4:0:0	4	4
		ME 611	Industrial Safety Engineering	4:0:0	4:0:0	4	4
		ME 613	Concepts of Composite Materials	4:0:0	4:0:0	4	4
		ME615	Concepts of Renewable Energy Resources	4:0:0	4:0:0	4	4
		EE611	Waste to Energy Technology	4:0:0	4 :0:0	4	4
		COM223	Business Analytics	4:0:0	4:0:0	4	4
		CSE611	Introduction to Internet of things	4:0:0	4:0:0	4	4
		CSE613	Software Project Planning and Management	4:0:0	4:0:0	4	4

I. Theory Subjects

II. Practical Subjects

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PC lab	EE609	Dissertation-I	0:0:20	0:0:10	20	10

III. Professional Elective-V

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	PE	EE601	FACTS and Custom Power Devices	3:0:0	3:0:0	3	3
2	PE	EE603	Modeling and Control of Distributed Parameter System	3:0:0	3:0:0	3	3
4	PE	EE605	Dynamics of Linear Systems	3:0:0	3:0:0	3	3
	PE	EE607	Energy Conversion Processes	3:0:0	3:0:0	3	3

51055

- Total Contact Hours = 27
- Total Credits Hours = 17

TORNER, POTT PLANNOR (*

SEMESTER IV

Scheme for M. Tech. 4th Semester

I. Theory Subjects

S. No.	Туре	Subject Code	Subject Name	Contact Hours (L:T:P)	Credits (L:T:P)	Total Contact Hours	Total Credit Hours
1	Dissertation	EE602	Dissertation-II	0:0:32	0:0:16	32	16
				100			

- Total Contact Hours = 32
- Total Credits Hours = 16

**	Audit	courses:
----	-------	----------

COURSE CODE:

EEA<mark>501-</mark>19. English for Research Paper Writing

A502-19. Disaster Management

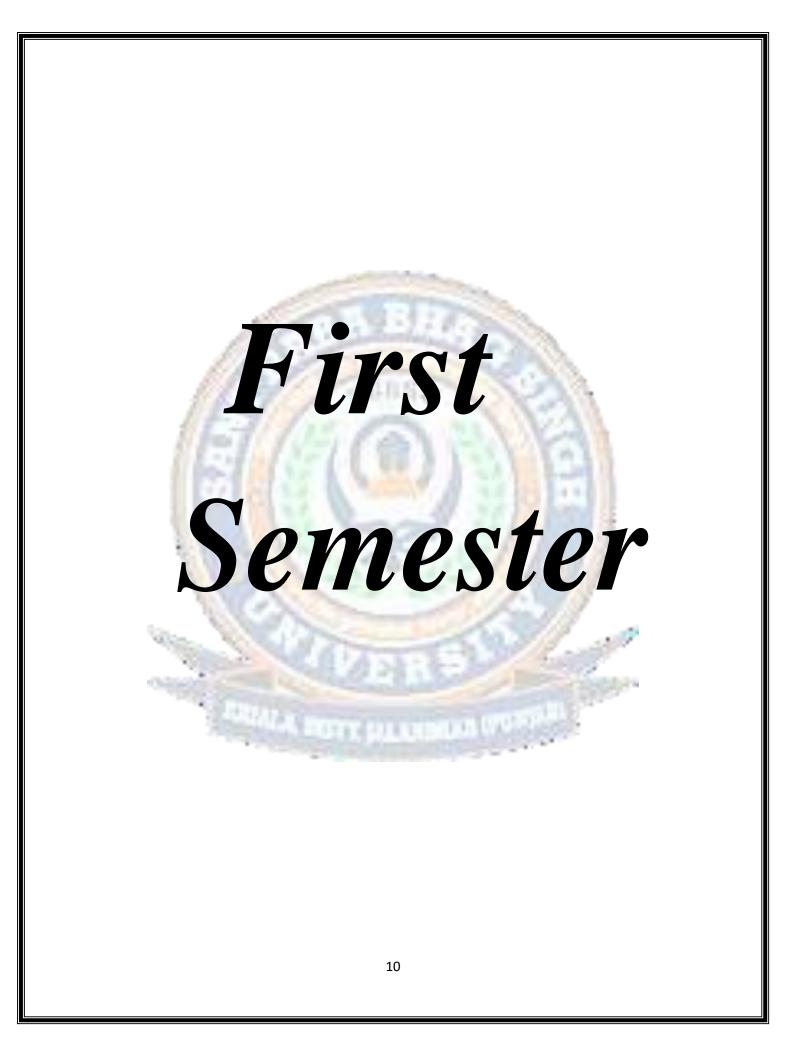
A503-19. Sanskrit for Technical Knowledge

A504-19. Value Education

A505-19. Constitution of India

A506-19. Pedagogy Studies

A507-19. Stress Management by Yoga


A508-19. Personality Development through Life Enlightenment Skills

COURSE SCHEME SUMMARY

Sem	L	Т	Р	Contact hrs/wk	Credits	РС	PE	OE	Add on/ Audit Courses	Project/ Trg/Seminar/! Dissertation
1	16	-	8	<mark>24</mark>	<mark>18</mark>	8	8	-	NC	-
2	14	-	12	<mark>26</mark>	<mark>18</mark>	8	8		NC	2(mini project with seminar)
3	7	-	20	27	17	10	3	4	-	
4			32	<mark>32</mark>	<mark>16</mark>	-	-	-	-	16 (Dissertation-II)
Total	37	0	72	<mark>109</mark>	<mark>69</mark>	26	19	4	2 units(NC)	18

THERE & BOTT PLUMBOR (NO

Course Code	EE501
Course Title	Power System Analysis
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Power system.
Course Objectives	Study various methods of load flow and their advantages and
(CO)	disadvantages, Understand how to analyze various types of faults in
	power system, power system security concepts and study the methods
	to rank the contingencies and need of state estimation and study
63	simple algorithms for state estimation.

UNIT-I

Load flow: Overview of Newton-Raphson, Gauss-Siedel, fast decoupled methods, convergence properties, sparsity techniques, handling Q-max violations in constant matrix, inclusion in frequency effects.

AVR in load flow, handling of discrete variable in load flow, Fault Analysis: Simultaneous faults, open conductor faults, generalized method of fault analysis.

UNIT-II

Security Analysis: Security state diagram, contingency analysis, generator shift distribution factors. line outage distribution factor, multiple line outages, overload index ranking.

UNIT-III

Power System Equivalents: WARD REI. equivalents, State Estimation: Sources of errors in measurement Virtual and Pseudo, Measurement, Observability, Tracking state estimation, WSL method, bad data correction.

UNIT-IV

Voltage Stability: Voltage collapse, P-V curve, multiple power flow solution, continuation power flow, optimal multiplies load flow, voltage collapse proximity indices

RECOM	RECOMMENDED BOOKS					
Sr. no.	Name	Author(s)	Publisher			
1	Power system analysis	J.J. Grainger & W.D.Stevenson	McGraw Hill ,2003			
2	Advanced Power System Analysis and Dynamic	L.P. Singh	New Age International, 2006			
3	Faulted power system analysis.	P.M. Anderson.	IEEE Press, 1995			
4	Power generation, operation and control	A.J. Wood	John Wiley, 1994			

Course Code	EE503		
Course Title	Power System Dynamics-I		
Type of Course	PC		
L T P	300		
Credits	3		
Course Prerequisites	Power system, Electrical Machines		
Course Objectives	1. Study of system dynamics and its physical interpretation 2.		
(CO)	Development of mathematical models for synchronous machine 3.		
Modeling of induction motor.			
SYLLABUS			

UNIT-I

Synchronous Machines: Per unit systems, Park's Transformation (modified), Flux-linkage equation. Voltage and current equations, Formulation of State-space equations, Equivalent circuit.

UNIT-II

Sub-transient and transient inductance and Time constants, Simplified models of synchronous machines.

UNIT-III

Small signal model: Introduction to frequency model, Excitation systems and Philips-Heffron model, PSS Load modeling.

UNIT-IV

Modeling of Induction Motors, Prime mover controllers.

RECOM	RECOMMENDED BOOKS					
Sr. no.	Name	Author(s)	Publisher			
1	Power System Dynamics and	J Machowski, J Bialek	John Wiley & Sons,			
	Stability.	& J. R W. Bumby,	1997			
2	Power system stability Vol. I & III.	E.W. Kimbark	John Wiley & Sons,			
			New York 2002			
3	Power System Control and Stability	P. M. Anderson & A.	New Delhi, 1981			
	Galgotia.	A. Fouad				
4	Power System Stability and Control	P.Kundur	McGraw Hill Inc.,			
			1994.			

Course Code	EE505
Course Title	Power System Steady State Analysis Laboratory
Type of Course	PC
LTP	002
Credits	1
Course Prerequisites	Power Electronics.
Course Objectives	1. To understand power system problems 2. To understand how to
(CO)	analyze the power system load flow studies, forecasting & unit
	Commitment. 3. To understand the role of power electronic devices.

\$90.85

- 1. Power Systems & Power Electronics Lab
- 2. Computer Simulation Lab
- 3. Simulation of IGBT Inverters.
- 4. Simulation of Thyristor Converters.
- 5. Transient Stability Studies.
- 6. Short Circuit Studies.
- 7. Load Flow Studies
- 8. Load Forecasting and Unit Commitment

+ 17.18

CONTRACTOR NUMBER OF

EE507
Power System Dynamics Laboratory
PC
002
1
Electrical machines Lab.
1. To understand the stability analysis for single machine system 2.
To understand the stability analysis for single machine system using
models. 3. Development of simulink model for excitation system
using MATLAB.

- 1. To develop a MATLAB program to study small signal stability analysis of single machine infinite bus system using classical machine model.
- 2. To develop a MATLAB program to study small signal stability analysis of single machine infinite bus system using Type B1 model.
- 3. To develop a simulink model of IEEE type 1(1968) excitation system using MATLAB.
- 4. To develop a MATLAB program to study small signal stability analysis of single machine infinite bus system using Type B1 –effect of excitation system.
- 5. To develop a MATLAB program to study small signal stability analysis of single machine infinite bus system using Type B1 machine model with simple excitation system- effect of PSS.

Course Code	EE509	
Course Title	Advanced Power Electronic Circuits	
Type of Course	PC	
L T P	300	
Credits	3	
Course Prerequisites	Power Electronics.	
Course Objectives	jectives 1. Understand the operation of advanced power electronic circuit	
(CO)	topologies. 2. Understand the control strategies involved. 3. Learn	
	few practical circuits, used in practice	
SYLLABUS		

UNIT-I

Boost type APFC and control, Three phase utility interphases and control-Buck, Boost, Buck-Boost SMPS Topologies.

UNIT-II

Modes of operation –Push-Pull and Forward Converter Topologies - Voltage Mode Control. Half and Full Bridge Converters.

UNIT-III

Flyback Converter. Introduction to Resonant Converters. Load Resonant Converter. Zero Voltage Switching Clamped Voltage Topologies.

. .

1.2.1

UNIT-IV

Resonant DC Link Inverters with Zero Voltage Switching. High Frequency Link Integral Half Cycle Converter. Modelling and design of DC-DC Converters for various renewable energy conversion. Few power electronic circuits used in practice for controlling electric drives.

No. of Street, or other

RECOM	RECOMMENDED BOOKS			
Sr. no.	Name	Author(s)	Publisher	
1	Power Electronics.	Rashid	Prentice Hall India 2007.	
2	Thyristorised Power Controllers.	G.K.Dubey et.al	John Wiley & Sons, New York 2002	
3	Power Semiconductor Circuits.	Dewan & Straughen	John Wiley &Sons., 1975.	
4	Modern Power Electronics and AC Drives.	P.Kundur	Pearson Education (Asia)., 2007	

Course Code	EE511
Course Title	Digital Control
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Digital, Control System.
Course Objectives	1. To familiarize the student with the concept of discretization 2.
(CO)	Introduction to discrete-time system representations and digital
	control 3. Learn to design controller for digital systems

UNIT-I

Introduction to discrete-time systems Frequency domain approach – Analysis and discretization Time domain approach, analysis and discretization State space formulation for discretized systems

331155

UNIT-II

Engineering aspects of computer controlled systems. Sampled data systems Control of Sampled data systems.

UNIT-III

Concept of differential sampling, Closed loop analysis of differentially sampled systems Control design based on differential sampling.

UNIT-IV

Recent applications of Digital Control.

RECOMMENDED BOOKS			
Sr. no.	Name	Author(s)	Publisher
1	Discrete-time Control Systems.	K. Ogata	Ed. 2, Prentice-Hall, 1995.
2	Digital Control Systems.	Benjamin C. Kuo,	Ed. 2, Oxford Uiversity Press, 1999

PT # 10 PJ # 10 D J P 21

Course Code	EE513
Course Title	Renewable Energy System
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Non-Conventional Energy Resources.
Course Objectives	1. Study of system dynamics and its physical interpretation 2.
(CO)	Development of mathematical models for synchronous machine 3.
	Modeling of induction motor

UNIT-I

Introduction, Distributed vs Central Station Generation, Sources of Energy such as Microturbines, Internal Combustion Engines. . - 2

UNIT-II

Introduction to Solar Energy, Wind Energy, Combined Heat and Power, Hydro Energy, Tidal Energy, Wave Energy, Geothermal Energy, Biomass and Fuel Cells.

UNIT-III

Power Electronic Interface with the Grid Impact of Distributed Generation on the Power System, Power Quality Disturbances.

UNIT-IV

Transmission System Operation, Protection of Distributed Generators, Economics of Distributed Generation, Case Studies.

4.4

RECOMMENDED BOOKS			
Sr. no.	Name	Author(s)	Publisher
1	Photovoltaic System Engineering.	Roger A.	Messenger, Jerry Ventre 3rd Ed, 2010
2	Renewable Energy Sources and Emerging Technologies.	Ranjan Rakesh, Kothari D.P, Singal K.C.	2nd Ed. Prentice Hall of India, 2011
3	IntegrationofDistributedGeneration in the Power System.	Math H. Bollen, Fainan Hassan	July 2011, Wiley- IEEE Press
4	Distributed Generation: Induction and Permanent Magnet Generators.	Loi Lei Lai, Tze Fun Chan	October 2007, Wiley- IEEE Press.

Course Code	EE515		
Course Title	Engineering Optimization		
Type of Course	PC		
LTP	300		
Credits	3		
Course Prerequisites			
Course Objectives	1. To understand the need for optimization and different techniques		
(CO)	involved and also constraints. 2. To know Linear/Non-linear		
	Programming. 3. To understand the importance of optimization to		
	solve Engineering problems 4. To know genetic algorithm for		
	Engineering Optimization		

UNIT-I

Concepts of optimization: Engineering applications Statement of optimization Problem, Classification - type and size of the problem Classical Optimization Techniques: Single and multi variable problemsTypes of Constraints Semi definite case-saddle point.

UNIT-II

Linear programming: Standard form-Geometry of LP problems-Theorem of LP Relation to convexity - formulation of LP problems - simplex method and algorithm Matrix form- two phase method. Duality dual simplex method- LU Decomposition.

UNIT-III

Sensitivity analysis. Artificial variables and complementary solutions-QP Engineering Applications: Minimum cost flow problem Network problems-transportation, assignment & allocation, scheduling Karmarkar method-unbalanced and routing problems.

UNIT-IV

Basic decent methods: Fibonacci & Golden section search – Gradient methods – Newton Method-Lagrange multiplier method - Kuhn-tucker conditions QuasiNewton method- separable convex programming- Frank and Wolfe method, Engineering applications Nonlinear programming-Constrained optimization: Characteristics of constraints -Direct methods- SLP, SQP-Indirect methods. Transformation techniques-penalty function-Langrange multiplier methods checking convergence- Engineering applications

RECOM	RECOMMENDED BOOKS			
Sr. no.	Name	Author(s)	Publisher	
1	Linear and Non Linear Programming.	David G Luenberger,	AddisonWesley Pub. Co., Massachusetts, 2003	
2	Operation Research-Applications & Algorithms.	W.L. Winston	2nd Ed., PWS-KENT Pub. Co., Boston, 2007	
3	Engineering Optimization	S.S.Rao	3rdEd.,NewAgeInternational(P)Ltd,New Delhi,2007	
4	Non Linear Optimization: theory and algorithms.	L.C.W. Dixton	Birkhauser, Boston, 1980	

Course Code	517	
Course Title	PWM Converters And Application	
Type of Course	PC	
LTP	300	
Credits	3	
Course Prerequisites	Power Electronics.	
Course Objectives	1. Understand the concepts and basic operation of PWM converters,	
(CO)	including basic circuit operation and design. 2. Understand the	
	steady-state and dynamic analysis of PWM converters along with the	
	applications like solid state drives and power quality.	

UNIT-I

AC/DC and DC/AC power conversion Overview of applications of voltage source converters and current source converters. Pulse width modulation techniques for bridge converters Bus clamping PWM. Space vector based PWM. Advanced PWM techniques.

UNIT-II

Practical devices in converter. Calculation of switching and conduction power losses. Compensation for dead time and DC voltage regulation. Dynamic model of PWM converter. Multilevel converters. Constant V/F induction motor drives.

UNIT-III

Estimation of current ripple and torque ripple in inverter fed drives. Line-side converters with power factor compensation.

UNIT-IV

Active power filtering. Reactive power compensation. Harmonic current compensation. Selective harmonic elimination PWM technique for high power electric drives

RECOM	RECOMMENDED BOOKS				
Sr. no.	Name	Author(s)	Publisher		
1	Power Electronics: Converters, Applications and Design.	Mohan, Undeland and Robbins.	John's Wiley and Sons.		
2	Fundamentals of Power Electronics.	Erickson RW	Chapman and Hall.		
3	Power Electronics: Principles and Applications.	Vithyathil. J	McGraw Hill.		

Course Code	EE519	
Course Title	Electrical Power Distribution System	
Type of Course	PC	
LTP	300	
Credits	3	
Course Prerequisites	Power System.	
Course Objectives	1. Learning about power distribution system 2. Learning of SCADA	
(CO)	System 3. Understanding Distribution Automation	

UNIT-I

SYLLABUS

Distribution of Power, Management, Power Loads, Load Forecasting Short-term & Long-term, Power System Loading, Technological Forecasting.

UNIT-II

Advantages of Distribution Management System (D.M.S.), Distribution Automation: Definition, Restoration / Reconfiguration of Distribution Network, Different Methods and Constraints, Power Factor Correction.

. .

UNIT-III

Interconnection of Distribution, Control & Communication Systems, Remote Metering, Automatic Meter Reading and its implementation, SCADA: Introduction, Block Diagram, SCADA Applied To Distribution Automation, Common Functions of SCADA, Advantages of Distribution Automation through SCADA.

UNIT-IV

Calculation of Optimum Number of Switches, Capacitors, Optimum Switching Device Placement in Radial, Distribution Systems, Sectionalizing Switches – Types, Benefits, Bellman's Optimality Principle, Remote Terminal Units, Energy efficiency in electrical distribution & Monitoring. Maintenance of Automated Distribution Systems, Difficulties in Implementing Distribution, Automation in Actual Practice, Urban/Rural Distribution, Energy Management, AI techniques applied to Distribution Automation.

RECOM	RECOMMENDED BOOKS			
Sr. no.	Name	Author(s)	Publisher	
1	Electric Power Distribution.	A.S. Pabla	TataMcGrawHillPublishingCo.Ltd.,Fourth Edition.	
2	G.M. Dhole, "A Text Book of Electrical power Distribution Automation.	M.K. Khedkar	University Science Press, New Delhi.	
3	Electrical Distribution Engineering	Anthony J Panseni	CRC Press McGraw Hill.	
4.	Electric Power Distribution, automation, protection & control.	James Momoh	CRC	

Course Code	EE521	
Course Title	SCADA Systems And Applications	
Type of Course	PC	
L T P	300	
Credits	3	
Course Prerequisites	Power System.	
Course Objectives	1. To understand what is meant by SCADA and its functions. 2. To	
(CO)	know SCADA communication. 3. To get an insight into its	
	application	
SYLLABUS		

UNIT-I

Introduction to SCADA: Data acquisition systems, Evolution of SCADA, Communication technologies. Monitoring and supervisory functions, SCADA applications in Utility Automation, Industries SCADA.

UNIT-II

Industries SCADA System Components: Schemes- Remote Terminal Unit (RTU), Intelligent Electronic Devices (IED), Programmable Logic Controller (PLC), Communication Network, SCADA Server, SCADA/HMI Systems.

UNIT-III

SCADA Architecture: Various SCADA architectures, advantages and disadvantages of each system - single unified standard architecture -IEC 61850.

UNIT-IV

SCADA Communication: various industrial communication technologies -wired and wireless methods and fiber optics. open standard communication protocols. SCADA Applications: Utility applications- Transmission and Distribution sector- operations, monitoring, analysis and improvement. Industries - oil, gas and water, Case studies, Implementation, Simulation Exercises

RECOM	RECOMMENDED BOOKS.		
Sr. no.	Name	Author(s)	Publisher
1	SCADA-Supervisory Control and	Stuart A. Boyer	Instrument Society of
	Data Acquisition.		America Publications,
			USA, 2004
2	Practical Modern SCADA	Gordon Clarke,	Newnes Publications,
	Protocols: DNP3, 60870.5 and	Deon Reynders	Oxford, UK,2004.
	Related Systems.		
3	Cybersecurity for SCADA systems.	William T. Shaw	PennWell Books, 2006
4.	Practical SCADA for industry	David Bailey,	Newnes, 2003
		Edwin Wright	

Course Code	EE523
Course Title	Optimal & Adaptive Control
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Power System.
Course Objectives	1. To know the operation of closed and open loop optimal control. 2.
(CO)	Understand the adaptive control strategies. 3. Learn dynamic
	programming method.

UNIT-I

Optimal control problem – fundamental concepts and theorems of calculus of variations–Euler - Language equation and extremal of functional. Variational approach to solving optimal control problems. Hamiltonian and different boundary conditions for optimal control problem.

UNIT-II

Linear regulator problem - Pontryagin's minimum principle Dynamic programming - Principle of optimality and its application to optimal control problem.

UNIT-III

Hamilton-Jacobi-Bellman equation - model reference adaptive systems(MRAS) - Design hypothesis.

UNIT-IV

Introduction to design method based on the use of Liapunov function. Design and simulation of variable structure adaptive model following control.

RECOM	RECOMMENDED BOOKS.		
Sr. no.	Name	Author(s)	Publisher
1	Optimal Control Theory An introduction.	Donald E. Kirk	Prentice Hall Inc, 2004
2	Optimum Systems Control.	A.P. Sage	Prentice Hall, 1977
3	Modern Control, Principles and Applications.	HSU and Meyer	McGraw Hill, 1968
4.	Adaptive Control (Model Reference Approach)	Yoan D. Landu	Marcel Dekker, 1981

Course Code	MAT524
Course Title	Research Methodology and IPR
Type of Course	Audit
LTP	300
Credits	3
Course Prerequisites	Basic knowledge of mathematical concepts
Course Objectives	The course aims at equipping students with an understanding of the
(CO)	research process, tools and techniques in order to facilitate
	managerial decision making.

Unit –I

An Introduction to Research: Meaning, Definition, Objectives and Process; Research Problem: Selection of Problem, Understanding Problem, Necessity of Defined Problem; Review of Literature in Research. Research Design: Meaning, Types –Descriptive, Diagnostic, Exploratory and Experimental.

Unit –II

Sources Of Data: Primary And Secondary; Data Collection Methods; Questionnaire Designing: Construction, Types And Developing A Good Questionnaire. Sampling Design and Techniques, Scaling Techniques, Meaning, Types, Data Processing Operations, Editing, Coding, Classification, Tabulation. Research Proposal/Synopsis Writing.

Unit –III

Statistics - Descriptive Statistics: Central Tendency and Dispersion, Correlation: Linear, Partial and Multiple, Simple and Multiple Regression, Discriminant Analysis, Conjoint Analysis, Time Series and Business Forecasting. Applications of Index Numbers; Sampling Distribution; Tests Of Significance: Z-Test, T-Test, Chi-Square Test, F -Test, And ANOVA; Use Of SPSS For T-Test, Chi-Square Test and ANOVA.

Unit –IV

Multi Dimensional Scaling: Factor Analysis, Cluster Analysis, Interpretation of Data, Report Preparation and Presentation. Each Student has to prepare Mini Research Project on Topic / Area of their Choice and Make Presentation. The report should consist of application of tests and techniques mentioned in above units. Relevant Case Studies should be discussed in class. Note: Practical-Use of SPSS / Systat and Excel.

RECOM	RECOMMENDED BOOKS			
Sr. no.	Name	Sr. no.	Name	
1	Business Research Methods	1	Business Research	
			Methods	
2	An Applied Orientation	2	An Applied Orientation	
4	Research Methodology: Methods &	4	Research Methodology:	
	Techniques		Methods & Techniques	
4	SPSS Explained	4	SPSS Explained	

Course Code	502
Course Title	Power System Dynamics-II
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Power System.
Course Objectives	1. Study of power system dynamics 2. Interpretation of power system
(CO)	dynamic phenomena 3. Study of various forms of stability

UNIT-I

Basic Concepts of Dynamic Systems and Stability Definition, Small Signal Stability (Low Frequency Oscillations) of Unregulated and Regulated System Effect of Damper, Flux Linkage Variation and AVR.

UNIT-II

Large Signal Rotor Angle Stability, Dynamic Equivalents And Coherency, Direct Method of Stability Assessment, Stability Enhancing Techniques, Mitigation Using Power System Stabilizer.

UNIT-III

Asynchronous Operation and Resynchronization, Multi-Machine Stability Dynamic Analysis of Voltage Stability, Voltage Collapse.

UNIT-IV

Frequency Stability, Automatic Generation Control, Primary and Secondary Control, Sub-Synchronous Resonance and Counter Measures.

RECOM	RECOMMENDED BOOKS.		
Sr. no.	Name	Author(s)	Publisher
1	Power System Stability and Control.	P. Kundur	McGraw Hill Inc, 1994
2	Power System Dynamics and Stability.	J. Machowski, Bialek, Bumby	John Wiley & Sons, 1997
3	Power System Stability and Control	L. Leonard Grigsby (Ed.);	CRC Press, 2007
4.	Computational Techniques for voltage stability assessment & control.	V. Ajjarapu	Springer, 2006

Course Code	504
Course Title	Digital Protection Of Power System
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Power system Protection
Course Objectives	1. Study of numerical relays 2. Developing mathematical approach
(CO)	towards protection 3. Study of algorithms for numerical protection.

UNIT-I

Evolution of digital relays from electromechanical relays, Performance and operational characteristics of digital protection Mathematical background to protection algorithms, Finite difference techniques.

UNIT-II

Interpolation formulae, Forward, backward and central difference interpolation, Numerical differentiation, Curve fitting and smoothing, Least squares method, Fourier analysis, Fourier series and Fourier transform, Walsh function analysis.

UNIT-III

Basic elements of digital protection, Signal conditioning: transducers, surge protection, analog filtering, analog multiplexers, Conversion subsystem: the sampling theorem, signal aliasing, Error, sample and hold circuits, multiplexers, analog to digital conversion, Digital filtering concepts, The digital relay as a unit consisting of hardware and software.

UNIT-IV

Sinusoidal wave based algorithms, Sample and first derivative (Mann and Morrison) algorithm, Fourier and Walsh based algorithms Fourier Algorithm: Full cycle window algorithm, fractional cycle window algorithm, Walsh function based algorithm, Least Squares based algorithms, Differential equation based algorithms, Traveling Wave based Techniques, Digital Differential Protection of Transformers, Digital Line Differential Protection, Recent Advances in Digital Protection of Power Systems

1.24

RECOM	MENDED BOOKS.		1110-14
Sr. no.	Name	Author(s)	Publisher
1	Computer Relaying for Power	A.G. Phadke and J.	Wiley/Research studies
	Systems.	S. Thorp	Press, 2009.
2	Digital Protection of Power	A.T. Johns and S.	IEEE Press,1999
	Systems.	K. Salman	
3	Numerical Distance Protection.	Gerhard Zeigler	Siemens Publicis
			Corporate Publishing,
			2006
4.	"Digital Power System Protection"	S.R. Bhide	PHI Learning
			Pvt.Ltd.2014.

Course Code	EE506
Course Title	Power System Protection Laboratory
Type of Course	PC
LTP	004
Credits	2
Course Prerequisites	Power System.
Course Objectives	1. To understand power system protection through feeders. 2. To
(CO)	understand the transformer protection, reverse power and induction
	relay.

- 1. Introduction to Power System Protection
- 2. Impact of Induction Motor Starting on Power System
- 3. Modelling of Differential Relay using MATLAB
- 4. Radial Feeder Protection
- 5. Parallel Feeder Protection
- 6. Principle of Reverse Power Protection
- 7. Differential Protection of Transformer

STELL S

8. To the study time Vs. voltage characteristics of over voltage induction relay

COLUMN TO A DESCRIPTION OF THE OWNER OWNER

Course Code	510
Course Title	Advance Control System.
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Control System.
Course Objectives	1. The course provides glimpses into the advanced methods of
(CO)	modeling and analysis of the dynamical systems. 2. The course is a
	strong step in inculcating the research aptitude in the students

Math Modelling of Dynamical Systems: Newtonian and Lagrangian approaches, Concept of dynamical state of a system, Concept of equilibrium point, linearization of non-linear model. Review of Linear Algebra concepts: Field, Vector space, linear combination, linear independence, bases of a vector space, representation of any vector on different basis, matrix representation of a linear operator, change of basis, rank, nullity, range space and null space of a matrix. Eigen value and Eigen vector of a matrix, similarity transform, Diagonalisation.

UNIT-II

UNIT-I

Modern Control Analysis: Concept and computation of systems modes, controllability theorem and its proof, Observability theorem and its proof, Controllable and observable subspaces. Stability Analysis: Stability of linear systems, stability types and their definitions for any general system, Stability of an equilibrium point, Lyapunov stability theory for LTI systems, Quadratic forms and Lyapunov functions.

UNIT-III

Modern Control Design: Converting the math model to controllable canonical form and its use for pole placement, Concept of linear observer and its design, Design of reduced order observer, Compensator design using separation principle, Poles of compensator, Open loop and close-loop systems.

UNIT-IV

Optimal Control Theory: Introduction to the philosophy of optimal control, formulation of optimal control problem, different performance criterion, Linear quadratic regulator (LQR) and optimum gain matrix, Riccati equations, conceptual models and statistical models for random processes, Kalman filter. 1788-1181

RECOMMENDED BOOKS.			
Sr. no.	Name	Author(s)	Publisher
1	Control System Design: An	Bernard Friedland	Dover Publications, Inc.
	Introduction to State-Space		Mineola, New York,
	Methods.		2012
2	Linear Systems	Thomas Kailath	Prentice-Hall Inc., New
			Jersey, 1986
3	Modern Control System Theory.	M. Gopal	New Age International
			(P) Limited, New
			Delhi,2000

DECOMPENDED DOOLO

Course Code	512	
Course Title	Advanced Digital Signal Processing	
Type of Course	PC	
LTP	300	
Credits	3	
Course Prerequisites	Digital Signal Processing.	
Course Objectives	1. To understand the difference between discrete-time and	
(CO)	continuous-time signals 2. To understand and apply Discrete Fourier	
	Transforms (DFT)	

UNIT-I

Discrete time signals, Linear shift invariant systems- Stability and causality, Sampling of continuous time signals- Discrete time Fourier transformDiscrete Fourier series- Discrete Fourier transform, Z transform-Properties of different transforms.

UNIT-II

Linear convolution using DFT, Computation of DFT Design of IIR digital filters from analog filters, Impulse invariance method, Bilinear transformation method. FIR filter design using window functions, Comparison of IIR and FIR digital filters, Basic IIR and FIR filter realization structures, Signal flow graph representations Quantization process and errors, Coefficient quantisation effects in IIR and FIR filters.

UNIT-III

A/D conversion noise- Arithmetic round-off errors, Dynamic range scaling, Overflow oscillations and zero Input limit cycles in IIR filters, Linear Signal Models. All pole, All zero and Pole-zero models, Power spectrum estimation Spectral analysis of deterministic signals, Estimation of power spectrum of stationary random signals.

.....

UNIT-IV

Optimum linear filters, Optimum signal estimation, Mean square error estimation, Optimum FIR and IIR Filters.

RECOM	RECOMMENDED BOOKS.			
Sr. no.	Name	Author(s)	Publisher	
1	Digital Signal Processing: A	Sanjit K Mitra	Tata Mc-Graw-Hill	
	computer-based approach.	The second s	Edition1998	
2	Statistical and Adaptive Signal	Dimitris G.	Mc Grow Hill	
	Processing.	Manolakis, Vinay	international editions	
		K. Ingle and	200	
		Stephen M.		
		Kogon,		

Course Code	EE514
Course Title	Dynamics Of Electrical Machines
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Electrical Machines.
Course Objectives	1. Learn Performance characteristics of machine 2. To understand the
(CO)	dynamics of the machine 3. To understand how to determine stability
	of machine 4. Learn the synchronous machine

UNIT-I

Stability, Primitive 4 Winding Commutator Machine, Commutator Primitive Machine, Complete Voltage Equation of Primitive 4 Winding, Commutator Machine.

UNIT-II

Torque Equation Analysis of Simple DC Machines using the Primitive Machine Equations, The Three Phase Induction Motor, Transformed Equations, Different Reference Frames for Induction Motor Analysis Transfer, Function Formulation.

UNIT-III

Three Phase Salient Pole Synchronous Machine, Parks Transformation, Steady State Analysis. Large Signal Transient, Small Oscillation Equations in State Variable form, Dynamical Analysis of Interconnected Machines.

UNIT-IV

Large Signal Transient Analysis using Transformed Equations, DC Generator /DC Motor System. Alternator /Synchronous Motor System.

RECOM	RECOMMENDED BOOKS.		
Sr. no.	Name	Author(s)	Publisher
1	Electrical Machine Dynamics.	D.P. Sengupta& J.B. Lynn	The Macmillan Press Ltd. 1980
2	Electric Motor Drives, Modeling, Analysis, and Control.	R Krishnan	Pearson Education., 2001
3	Analysis of Electrical Machines.	P.C. Kraus	McGraw Hill Book Company,1987
4	Electrical Machine Dynamics	I. Boldia& S.A. Nasar	The Macmillan Press Ltd. 1992
5	The Unified Theory of Electrical Machines.	C.V. Jones	Butterworth, London. 1967.

Course Code	EE516
Course Title	Smart Grid
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Power System.
Course Objectives (CO)	1. Understand concept of smart grid and its advantages over conventional grid. 2. Know smart metering techniques. 3. Learn wide area measurement techniques. 4. Understanding the problems associated with integration of distributed generation & its solution through smart grid.

UNIT-I

Introduction to Smart Grid, Evolution of Electric Grid. Concept of Smart Grid, Definitions, Need of Smart Grid. Concept of Robust &Self-Healing Grid, Present development & International policies in Smart Grid. Introduction to Smart Meters, Real Time Prizing, Smart Appliances. Automatic Meter Reading (AMR). Outage Management System (OMS). Plug in Hybrid Electric Vehicles(PHEV). Vehicle to Grid, Smart Sensors. Home & Building Automation, Smart Substations, Substation Automation, Feeder Automation.

UNIT-II

Geographic Information System (GIS). Intelligent Electronic Devices (IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro. Compressed Air Energy Storage. Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU).

UNIT-III

Concept of micro-grid, need & applications of micro-grid. Formation of microgrid, Issues of interconnection. Protection & control of micro-grid. Plastic & Organic solar cells, Thin film solar cells. Variable speed wind generators, fuelcells, micro-turbines. Captive power plants, Integration of renewable energy sources.

UNIT-IV

Advanced Metering Infrastructure (AMI), Home Area Network (HAN). Neighbourhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication. Wireless Mesh Network. Basics of CLOUD Computing &Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

RECOM	RECOMMENDED BOOKS.			
Sr. no.	Name	Author(s)	Publisher	
1	Electrical Machine Dynamics.	D.P. Sengupta&	The Macmillan Press Ltd.	
		J.B. Lynn	1980	
2	Electric Motor Drives, Modeling,	R Krishnan	Pearson Education., 2001	
	Analysis, and Control.			
3	Analysis of Electrical Machines.	P.C. Kraus	McGraw Hill Book	
			Company,1987	
4	Electrical Machine Dynamics	I. Boldia& S.A.	The Macmillan Press Ltd.	
		Nasar	1992	
5	The Unified Theory of Electrical	C.V. Jones	Butterworth, London.	
	Machines.		1967.	

RECOMMENDED BOOKS.

Course Code	EE518
Course Title	Distribution Generation
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Power System.
Course Objectives	1. To understand renewable energy sources. 2. To gain understanding
(CO)	of the working of off-grid and grid-connected renewable energy
	generation schemes.

UNIT-I

Need for Distributed generation. Renewable sources in distributed generation and current scenario in Distributed Generation. Planning of DGs. Sitting and sizing of DGs optimal placement of DG sources in distribution systems. Grid integration of DGs Different types of interfaces, Inverter based DGs and rotating machine based interfaces. Aggregation of multiple DG units.

UNIT-II

Technical impacts of DGs. Transmission systems Distribution Systems Deregulation Impact of DGs upon protective relaying. Impact of DGs upon transient and dynamic stability of existing distribution systems, Steady-state and Dynamic analysis.

. .

10.00

UNIT-III

Economic and control aspects of DGs Market facts. Issues and challenges Limitations of DGs, Voltage control techniques. Reactive power control, Harmonics Power quality issues, Reliability of DG based systems.

UNIT-IV

Introduction to micro-grids. Types of micro-grids: autonomous and nonautonomous grids Sizing of micro-grids. Modeling & analysis of Micro-grids with multiple DGs. Microgrids with power electronic interfacing units. Transients in micro-grids, Protection of micro-grids, Case studies, Advanced topics.

RECOM	RECOMMENDED BOOKS.		
Sr. no.	Name	Author(s)	Publisher
1	Distributed Power Generation -	H. Lee Willis,	Marcel Decker Press
	Planning and Evaluation.	Walter G. Scott	
2	Renewable Energy Systems -	M.Godoy Simoes,	CRC press.
	Design and Analysis with Induction	Felix A.Farret	
	Generators.		
3	Smart Grid: Infrastructure	Stuart Borlase	CRC Press
	Technology Solutions.		

Course Code	EE520
Course Title	Robust Control
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Control System.
Course Objectives	1. Introduction to control techniques with greater emphasis on
(CO)	robustness to modeling uncertainty 2. Introduction to parameter
	variations, and presence of disturbances and noise.

Modeling of uncertain systems, Signals and Norms Lyapunov theory for LTI systems.

UNIT-II

UNIT-I

Passive systems – frequency domain Passive systems – time domain Robust Stability and performance, Stabilizing controllers – Coprime factorization.

UNIT-III

LQR, LQG problems, Ricatti equations and solutions, Ricatti equation solution through LMI.

UNIT-IV

H-infinity control and mu-synthesis, Linear matrix inequalities for robust control.

RECOMMENDED BOOKS.			
Sr. no.	Name	Author(s)	Publisher
1	Optimal and Robust Control.	L. Fortuna, M. Frasca (Eds.).	CRC Press, 2012
2	Robust and Optimal Control.	K. Zhou, J. C. Doyle and K. Glover	Prentice Hall, 1996
3	Francis and A. R. Tannenbaum, "Feedback Control Theory".	J. C. Doyle, B. A.	Macmillan, 1992

TORNER DUTY PLUCINGS (VOIS)

Course Code	EE522
Course Title Artificial Intelligence Techniques	
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	
Course Objectives	1.Understanding fuzzy logic, ANN 2.Understanding GA & EP
(CO)	

UNIT-I

Biological foundations to intelligent Systems, Artificial Neural Networks, Single layer and Multilayer Feed Forward NN LMS and Back Propagation Algorithm, Feedback networks and Radial Basis Function Networks.

UNIT-II

Fuzzy Logic, Knowledge Representation and Inference Mechanism Defuzzification Methods.

UNIT-III

Fuzzy Neural Networks, some algorithms to learn the parameters of the network like GA. System Identification using Fuzzy and Neural Network.

UNIT-IV

Genetic algorithm, Reproduction cross over, mutation, Introduction to evolutionary program. 8 6 Applications of above mentioned techniques to practical problems.

RECOMMENDED BOOKS.			
Sr. no.	Name	Author(s)	Publisher
1	An Introduction to ANN.	J M Zurada	Jaico Publishing House
2	Neural Networks	Simon Haykins	Prentice Hall
3	Fuzzy Logic with Engg. Applications.	Timothy Ross	McGraw. Hill
4	An Introduction to Fuzzy Control.	Driankov, Dimitra	Narosa Publication
5	Genetic Algorithms.	Golding	Addison-Wesley Publishing Com

EE524	
Industrial Load Modeling & Control	
PC	
300	
3	
Generation of Electrical Power.	
1. Understand the energy demand scenario 2. Understand the	
modeling of load and its ease to study load demand industrially 3.	
Know Electricity pricing models 4. Study Reactive power	
management in Industries	

UNIT-I

SYLLABUS

Electric Energy Scenario-Demand Side Management-Industrial Load Management, Load Curves-Load Shaping Objectives-MethodologiesBarriers, Classification of Industrial Loads-Continuous and Batch processes -Load Modelling.

UNIT-II

Electricity pricing – Dynamic and spot pricing –Models, Direct load control- Interruptible load control, Bottom up approach- schedulingFormulation of load models, Optimization and control algorithms, Case studies.

UNIT-III

Reactive power management in industries-controls, Power quality impacts-application of filters Energy saving in Industries. Cooling and heating loads, Load profiling- Modeling, Cool storageTypes-Control strategies, Optimal operation, Problem formulation, Case studies.

UNIT-IV

Captive power units- Operating and control strategies, Power PoolingOperation models, Energy banking, Industrial Cogeneration. Selection of Schemes Optimal Operating Strategies-Peak load Saving, Constraints, Problem formulation- Case study, Integrated Load management for Industries.

RECOM	RECOMMENDED BOOKS.			
Sr. no.	Name	Author(s)	Publisher	
1	Industrial Load Management -	C.O. Bjork	Elsevier, the	
	Theory, Practice and Simulations.	The second s	Netherlands, 1989	
2	Load management concepts. IEEE	C.W. Gellings and	New York, 1986, pp. 3-	
	Press.	S.N. Talukdar	28	
3	Physically based Industrial load.	Y. Manichaikul	IEEE Trans. on PAS,	
		and F.C.	April 1981.	
		Schweppe		
4	Least cost Electricity Utility	H. G. Stoll	Wiley Interscience	
	Planning.		Publication, USA, 1989.	
5	Modern Power System	I.J.Nagarath and	Tata McGraw Hill	
	Engineering.,	D.P.Kothari	publishers, NewDelhi,	
			1995	

Course Code	EE526
Course Title Power Electronics Applications To Power Systems Lab	
Type of Course	PC
LTP	004
Credits	2
Course Prerequisites	Power System and Power Electronics.
Course Objectives	1. To understand and analyze the performance of thyristor, converters
(CO)	and inverters 2. Applications of power electronics in operation of
	power system.

- 1. Study of three phase line commutated thyristor converter circuit
- 2. To study the performance of three phase variable frequency drive
- 3. Switching characteristics of MOSFET and IGBT
- 4. Performance analysis of Buck and Boost converter
- 5. Study of three phase PWM and non PWM inverter

Course Code	EE528
Course Title	Smart Grids Laboratory
Type of Course	PC
LTP	004
Credits	2
Course Prerequisites	Power System.
Course Objectives	1. To understand smart grid structure 2. Understand the microgrid 3.
(CO)	Understand power quality issues in smart grid.

- 1. To study the components of smart grid.
- 2. To analyze the geographic information system for smart grid.
- 3. Formation of microgrid and protection and control of grid.
- 4. Understand power quality issues in grid connected renewable energy sources
- 5. Performance analysis of smart meters.

Course Code	EE530
Course Title	Artificial Intelligence Laboratory
Type of Course	PC
LTP	004
Credits	2
Course Prerequisites	MATLAB
Course Objectives	1. To understand applications of artificial intelligence technoiues 2.
(CO)	Designing of control system using these techniques. 3. Customization
	of controlling variables.

- 1. Write A Program For Best First Search.
- 2. Write A Program to Generate the output for A* Algorithm.
- 3. Write a Program To Show the Tic Tac Toe Game for 0 and X.
- 4. Write A Program For Expert System By Using Forward Chaining.
- 5. Comparing the Search Methods.
- 6. Implement the Greedy Search Algorithm.
- 7. Implement the min-max Algorithm.
- 8. Adding a Heuristic.

Course Code	EE601
Course Title	FACTS and Custom Power Devices
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Power System Analysis & Generation of Electrical Power.
Course Objectives	1. To learn the active and reactive power flow control in power
(CO)	system 2. To understand the need for static compensators 3. To
	develop the different control strategies used for compensation

UNIT-I

Reactive power flow control in Power Systems – Control of dynamic power unbalances in Power System, Power flow control -Constraints of maximum transmission line loading –Benefits of FACTS Transmission line compensation, Uncompensated line -Shunt compensation - Series compensation –Phase angle control. Reactive power compensation, Shunt and Series compensation principles – Reactive compensation at transmission and distribution level.

UNIT-II

Static versus passive VAR compensator, Static shunt compensators: SVC and STATCOM - Operation and control of TSC, TCR and STATCOM - Compensator control, Comparison between SVC and STATCOM.

4.4

UNIT-III

Static series compensation: TSSC, SSSC -Static voltage and phase angle regulators – TCVR and TCPAR Operation and Control –Applications, Static series compensation – GCSC, TSSC, TCSC and Static synchronous series compensators and their Control. SSR and its damping Unified Power Flow Controller: Circuit Arrangement, Operation and control of UPF, Basic Principle of P and Q control- Independent real and reactive power flow control- Applications.

UNIT-IV

Introduction to interline power flow controller. Modeling and analysis of FACTS Controllers – Simulation of FACTS controllers Power quality problems in distribution systems, harmonics, Loads that create harmonics, modeling, harmonic propagation, series and parallel resonances, mitigation of harmonics, passive filters, active filtering – shunt, series and hybrid and their control. Voltage swells, sags, flicker, unbalance and mitigation of these problems by power line conditioners- IEEE standards on power quality.

RECOMMENDED BOOKS.				
Sr. no.	Name	Author(s)	Publisher	
1	FACTS Controllers in Power Transmission and Distribution.	K R Padiyar	New Age International Publishers, 2007	
2	Flexible AC Transmission Systems- Modelling and Control.	X P Zhang, C Rehtanz.	B Pal	
3	Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems.	N.G. Hingorani, L. Gyugyi	IEEEPressBook,StandardPublishers andDistributors, Delhi, 2001.	

Course Code	EE603	
Course Title Modeling and Control Of Distributed Parameter System		
Type of Course	PC	
LTP	300	
Credits	3	
Course Prerequisites		
Course Objectives	1. Introduction to modeling, analysis and control of distributed	
(CO)	parameter systems 2. Introduction to finite discretization	

UNIT-I

Overview: Motivation and examples (wave propagation, fluid flow, network traffic, electromagnetism) 6Modeling of Distributed Parameter Systems: Parabolic and Hyperbolic. PDEs, Analytic and Numerical Solution of PDEs

UNIT-II

Lyapunov stability of DPS, Boundary control and Observer Design of DPS.

UNIT-III

Finite Difference discretization of DPS, Finite Element discretization of DPS, Boundary Elements discretization of DPS.

UNIT-IV

Reduction of discretized models. Applications: Control of systems with time delays, control of fluid flow, network control.

RECOMMENDED BOOKS.				
Sr. no.	Name	Author(s)	Publisher	
1	Boundary Control of PDEs: A Course on Backstepping Designs.	MiroslavKrsticandAndreySmyshlyaev	SIAM, 2008	
2	Nonlinear and Robust Control of PDE Systems.	Panagiotis D. Christofides, Birkhauser	2001	
3	Nonlinear Systems.	Hassan K. Khalil	Third Edition, Prentice Hall 2002	

Course Code	EE605
Course Title	Dynamics of Linear Systems
Type of Course	PC
LTP	300
Credits	3
Course Prerequisites	Linear control System.
Course Objectives	1. To understand the linear system and its functions 2. To understand
(CO)	the stability analysis of linear systems and implement the same in
	MATLAB

UNIT-I

SYLLABUS

State variable representations of systems, transfer function and transfer function matrix, solutions of state equations.

UNIT-II

Observability and controllability, minimal realization of MIMO systems, analysis of linear time varying systems, the concepts of stability. Lyapunov stability analysis, Lyapunov function and its properties, controllability by state variable feedback.

UNIT-III

Ackerman's Formula - stabilisation by output feedback, asymptotic observers for state measurement, observer design. State space representation of discrete systems, solution of state equations, controllability and observability stability analysis using Lyapunov method.

UNIT-IV

State feedback of linear discrete time systems, design of observers - MATLAB Exercises.

RECOM	RECOMMENDED BOOKS.			
Sr. no.	Name	Author(s)	Publisher	
1	Linear Systems.	Thomas Kailath	Prentice Hall Inc., Englewood Cliffs, N.J. 1980	
2	State Space Analysis of Control Systems.	K. Ogata	Prentice Hall Inc., Englewood Cliffs, N.J., 1965.	
3	Modern Control Engineering, (second edition).	K. Ogata	Prentice Hall Inc., Englewood Cliffs, N.J., 1990	
4	Digital Control and State Variable Methods.	M.Gopal	TataMcGrawHillPublishingCompanyLtd., New Delhi, 1997	
5	Linear System Theory and Design.	C.T. Chen	New York: Holt Rinehart and Winston ,1984	

Course Code	EE607		
Course Title	Energy Conversion Processes		
Type of Course	PC		
LTP	300		
Credits	3		
Course Prerequisites	Electrical Machines.		
Course Objectives	Course Objectives 1. Analysis of different energy system like solar 2. Understand design		
(CO)	aspects of MHD generators 3. Understand Fuel cell & their		
	applications		

UNIT-I

Basic science of energy conversion. Indirect verses direct conversion. Physics of semiconductor junctions for photovoltaic and photoElectro chemical conversion of solar energy. Fabrication and evaluation of varioussolar cells in photovoltaic power generation systems.

UNIT-II

Technology and physics of thermo-electric generations. Thermal-electric materials and optimization studies.

UNIT-III

Basic concepts and design considerations of MHD generators Cycle analysis of MHD systems . Thermonic power conversion and plasma diodes. Thermo dynamics and Performance of fuel cells and their applications.

UNIT-IV

Advanced topics in Energy Conversion Process.

RECOMMENDED BOOKS.				
Sr. no.	Name	Author(s)	Publisher	
1	Energy Conversion.	S. S. L. Chang	Prentice Hall, 1963. 16	
2	Direct Energy Conversion.	S. W. Angrist	Pearson, 1982	
3	Magneto hydrodynamic Energy Conversion.	R. J. Rosa	Springer, 1987	
4	Fuel Cell Problems and Solutions.	V. S. Bagotsky	John Wiley & Sons, 2009	

Course Code	EE609	
Course Title	Dissertation-I	
Type of Course	PC	
L T P	0:0:20	
Credits	10	
Course Prerequisites	Research Methodology and IPR	
Course Objectives	ITSE Objectives 1. To understand the need of problem formulation, literature review.	
(CO)	2. To understand the format of writing research paper and thesis report	

Students are expected to have expertise in your selected area including a solid understanding of the literature in your field before you delve into solving a specific research problem within that field. In the master's research you present an idea along with a preliminary plan for your research and convince the faculty that the proposed research is worthy of a dissertation. This document can't be a static one. It has to be updated regularly to track the dissertation .This Paper should be of 20-30 pages. It includes the following elements:

- 1) Abstract
- 2) Introduction
- 3) Brief overview of Literature
- 4) Problem Statement
- 5) Dissertation Goal
- 6) Research Questions
- 7) References
- 8) Appendix (if needed)

Guidelines for Dissertation-I

- Give a survey of the basic facts and theories in the field of research.
- Give an account of the recent work done by other researchers, and what important questions still remain• unanswered
- Show what ideas you have for new research to find the answers to some of these questions
- Give details of
- a. the new information you will seek
- b. the materials to be used
- c. the equipment needed
- d. the observations and measurements to be made
- e. how the data will be analyzed